

CHARACTERIZING THE LUNAR PARTICULATE ATMOSPHERE WITH THE AUTONOMOUS LUNAR DUST OBSERVER (ALDO)

Dr. C. J. Grund, Ball Aerospace & Technologies Corp. and Dr. J. E. Colwell, Physics Dept., University of Central Florida

Presented by: Chris Grund cgrund@ball.com, 303-939-7217

NLSI Lunar Science Conference NASA Ames Conference Center, Moffett Field, CA 7/21/2008

- Systematically study lunar dust "weather" phenomena
- Monitor and characterize anthropogenic effects on the dust environment
- Observe micrometeorite/regolith interaction processes

ALDO is:

a sensitive, short wavelength scanning laser radar (lidar).

Acknowledgements:

Feasibility and architecture study supported by NASA LSSO contract NNN08CC16C

Evidence for a Lunar Dust "Atmosphere" Horizon Glow

Rennilson and Criswell (1974): Analysis of Surveyor lander images of horizon glow after sunset.

- Image is a composite
- dust cloud has been repositioned
- distance to horizon ~ 150 m suggests h~0.3 m
- angular extent suggests particle radii ~6µm (fwd scatter peak)

Lunar Horizon Glow - 2

LEAM Apollo 17: Diurnal Lunar Dust "Weather"

Compare: Evidence for horizontal dust "wind"

Persistent diurnal cycle in lofted dust density

Lunar Dust and Human Activities

- Astronaut health
- Equipment performance
- Sortie site experiment disturbance
- Best experiment placement
- Impact on natural phenomena
- Determining best operating practices

ALDO Deployment Concept

8

ALDO Architecture

ALDO Scan Modes

ALDO Modes and Motives

ALDO Operating Mode Concepts:

- Autonomous site survey using fiducial markers
- Self-calibration for intensity using fiducial marker signal returns
- Fine scale vertical profiling near surface
- Rapid 360° cross section scans that reveal and track coherent structures
- Panoramic volume images provide large scale dust context
- Long stares providing high sensitivity vertical profiles (perhaps to 10 km)

Systematic Process Studies:

- Lidar provides large area range-resolved dust observations without affecting plasma
- Micrometeorite impact plumes (rates, decay, transport)
- Natural phenomena dark vs. sunlit, terminator crossings, fountains, profiles, dust transport and velocities (track coherent structures)
- Anthropogenic effects what activities/methods kick up the most/least dust
- Decay time from disturbed to natural background state
- Instrument effects on the dust environment
- Supports studies of the solar wind, optical, and tribo- charging phenomena

Numerical Simulations Predicting Dust

Motivation:

Predict the particle size and altitude distribution expectations for various to phenomena to evaluate ALDO requirements

Model for Lunar Phenomenology and Particle Characterization:

- Dayside photoelectron sheath.
- Calculate surface potential.
- Calculate currents to dust particle.
- Integrate equation of motion under force of gravity and electric force.
- Include effects of topography on shadowing (surface potential) and trajectories (not yet included)

Assumptions in the Model for Lidar Backscatter:

- Mie scattering (spheres) for now
- At the moment: flat mass distribution 100nm 1000 nm

Object Oriented Particle in Cell (OOPIC) model simulation of plasma sheath

Colwell et al. 2009 (J. Aero. Eng., in press)

Electric vs. Gravitational Force Balance

Trajectories of Lunar Dust

Trajectories of Lunar Dust

Lunar Particulate Atmosphere Simulation Conclusions (so far)

- Surveyor Horizon Glow particles are not floating (would be much higher, extended cloud), but are on ballistic trajectories.
- Height of HG cloud and size of LEAM (~30 cm) limit likely electrostatic launch velocity to 1 m/s.
- Useful (and practical) to characterize particles in the range of 0.1 μ m 5 μ m number density range TBD.

Next Steps

- Develop several standard dust atmosphere and performance predictions
- Hone in on laser and receiver requirements
- Trade power options (batteries, insulation, phase change materials)
- Consider night operations and survivability
- Consider ease of deployment
- Develop a technology roadmap

Conclusions

Observing natural and anthropogenic dust levitation and transport phenomena supports:

- Study of the evolution of airless bodies (e.g. moon, NEOs) including formation of regolith, stratigraphy/compaction, water and other resource content, and albedo
- Health, safety, and operational efficiencies for extended human activities
- Optimal design of instrumentation for long term operation (thermal control, optical effects, power systems, mechanisms)

Systematic lidar profiling of the dust environment enables study of :

- Micrometeorite impact plumes (rates, decay, transport, gardening)
- Natural background dark vs. sunlit, terminator crossings, fountains, profiles, transport
- Anthropogenic effects what activities/methods kick up the most/least dust
- Decay time from disturbed to natural background
- Instrument modifications to the local dust environment
- Solar wind, photoelectric, and tribo- charging effects on dust penomenology
- A top level lidar concept has been developed using modeled expectations of backscatter
 Reasonable existing (but not qualified) UV lasers support photon counting measurements
 - · An easily deployed, compact, robust, scanning, dust profiling lidar appears feasible
- ALDO is deployable on both robotic and human missions

Backup: Charging of the Lunar Surface

Backup: Equations of Charge and Motion

$$\frac{dQ_d}{dt} = I_{pe} - I_{e} - I_{sw} \qquad \frac{d^2z}{dt^2} = \frac{Q_d}{m_d} E - g \qquad E = 2\sqrt{2}\Phi_s \lambda_D \left(1 + \frac{z}{\sqrt{2}\lambda_D}\right)^{-1}$$

$$\Phi_{\rm d}$$
<0

$$I_{sw} = \pi r_d^2 e n_{sw} \sqrt{\frac{8k_B T_{sw}}{\pi m_e}} \exp\left(\frac{e\phi_d}{k_B T_{sw}}\right)$$

$$I_e = \pi r_d^2 e n_{pe} \sqrt{\frac{8k_B T_{pe}}{\pi m_e}} \exp\left(\frac{e\phi_d}{k_B T_{pe}}\right)$$

$$I_{pe} = \pi r_d^2 e I_{ph0} \exp\left(\frac{-e\phi_d}{k_B T_{pe}}\right)$$

$$\Phi_d > 0$$

$$I_{sw} = \pi r_d^2 e n_{sw} \sqrt{\frac{8k_B T_{sw}}{\pi m_e}} \left(1 + \frac{e\phi_d}{k_B T_{sw}} \right)$$

$$I_e = \pi r_d^2 e n_{pe} \sqrt{\frac{8k_B T_{pe}}{\pi m_e}} \left(1 + \frac{e\phi_d}{k_B T_{pe}} \right)$$

$$I_{pe} = \pi r_d^2 e I_{ph0}$$